If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32x^2+33x+1=0
a = 32; b = 33; c = +1;
Δ = b2-4ac
Δ = 332-4·32·1
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-31}{2*32}=\frac{-64}{64} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+31}{2*32}=\frac{-2}{64} =-1/32 $
| 1|2(x+4)=1|2x+1 | | 4(x-15)=3(x+5) | | 5(a-3=45 | | 3x+2x-4=28 | | -14y+7+6y=-9 | | -131-3x=4x+44 | | 4r+2.25r+14=5r-3/4r+1-3 | | 725=475+25x | | 3/2x+5=9/4x-11 | | 17z=0 | | 8x-3*(2+5x)=2*(7-x) | | -2x-147=123+7x | | 3b-b+14=26 | | (8y-43)+(39)=180 | | (8y-43)(39)=180 | | -12-3b=-4b | | 2p÷5-1,4=-0,4+5 | | 24.50+22.00=x+18.25+47.00 | | 4x+5x-10=688 | | 0=a/13 | | -10x-36=-12x+18 | | 28=10+2v | | 9(x-2)/6=6(x+2)/12 | | 4+4x+2x+3=4x+11 | | (3x+15)=(8x-5) | | 6n=-7n-5n | | -10x-11=-12x+21 | | 3(x+-1)=5x-6 | | 4-3q=2q-11 | | (5x+7)(3x+23)=100 | | 5a-(3a-10)=4a | | 1200x+100=3230+190x |